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1 Precursors and notation

1.1 The beginning: Names for numbers

Some numbers are for counting; we call these the natural numbers, N. These are numbers
like 1, 2, 3, . . .

The natural numbers, their negatives, and zero are called the integers, Z. These are numbers
like . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

Alongside the integers are numbers obtained by dividing an integer by an integer. We call
these the rational numbers, Q. These are represented by fractions and decimals, and include
numbers like − 30

100
, 0, 1, and 5.8. The only integer we cannot divide a number by is 0.

Together with numbers that cannot be represented as a fraction or a finite decimal (irrational
numbers like π), all of these numbers form the real numbers, R.

We will care a lot about series and sequences of numbers, which are arbitrarily long lists of
numbers.

1.2 Fractions

Fractions, which are a way of representing rational numbers (a ratio of numbers), have two
parts, a numerator and a denominator, arranged like this:

numerator

denominator

Let’s talk about how to add, subtract, multiply, and divide fractions. The simplest is actually
multiplication; when we multiply two fractions, we just multiply their numerators and their
denominators. So,

7

8
· 3

4
=

7 · 3
8 · 4

7

8
· 3

4
=

21

32

If a series of fractions have the same denominator, we can simply add or subtract their nu-
merators, like this:
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3

18
+

7

18
=

10

18

It’s much easier to understand fractions when the numerators and denominators are as small
as they can be. To do this, we simplify by dividing out any common terms like this:

10

18
=

5 · 2
9 · 2

10

18
=

5

9
· 2

2

10

18
=

5

9
· 1

10

18
=

5

9

To get two fractions’ denominators to be equal so that we can add or subtract them, one
idea is to multiply each fraction by the other fraction’s denominator divided by itself (which
simplifies to 1). This is rarely the simplest way of doing things, but it always works. For
example:

7

18
− 2

15
=

7

18
· 15

15
− 2

15
· 18

18

7

18
− 2

15
=

105

270
− 36

270

7

18
− 2

15
=

69

270

7

18
− 2

15
=

23

90
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Finally, when dividing fractions, we multiply by the reciprocal.

7
18
5
6

=
7

18
· 6

5

7
18
5
6

=
42

90

7
18
5
6

=
7

15

Practice problems: Give all of the answers in the simplest form

7

17
− 4

15
=

37

255

7

10
· 2

15
=

7

75

12

8
÷ 5

3
=

9

10

Simplify
8π

2π
= 4

1.3 Inequalities

• x > y: “x is greater than y”

• x < y: “x is less than y”

• x ≥ y: “x is greater than or equal to y”

• x ≤ y: “x is less than or equal to y”

Addition, subtraction, and multiplication for inequalities works just like it does for equal-
ities. But if you multiply or divide both sides of an inequality by a negative value, you have
to flip the sign of the inequality. For example:
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3x < 4x+ 2

−x < 2

x > −2

Why?

1.4 Absolute Value

We can think of numbers as having two components: sign and magnitude. The sign of a
number is either positive (+) or negative (-) – or, in the case of 0, neither. The magnitude
of a number is how distant it is from 0. For example, -2 and 2 have opposite signs but equal
magnitudes, becuase they are equally far from 0.

The absolute value expression, written |x|, takes any number x and returns the magni-
tude of the number with a positive sign. So, |x| = |−x|. For example, |−2| = 2.

When “solving” for an expression inside absolute value signs, we are asking: what num-
ber could have been put into the absolute value expression to return a certain value? There
will always be a positive and a negative answer (except in the case of 0). So when solving
an equation for the absolute value of a variable, we have to solve for the case where that
variable is positive and the case where that variable is negative.

|x− 3| > 4⇒ x− 3 > 4 and − (x− 3) > 4

x > 7 or x < −1

Notation: =⇒ means “implies”.
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1.5 Summation: Σ

The sum of a sequence can be written as a summation (Σ). This saves us from having to
write down arbitrarily large sequences.

For example, the sum of all the natural numbers from 1 to 100 can be written as:

100∑
i=1

i = 1 + 2 + · · ·+ 100

The bottom of the Σ symbol indicates an index (here, i), and its start value 1. At the
top is where the index ends. The content to the right of the summation is the terms that
are being added.

Summation notation is a concise way to represent large (or infinite) sums:

6∑
k=0

2xk = 2x6 + 2x5 + 2x4 + 2x3 + 2x2 + 2x+ 2

Just like in the longhand form, you can factor out constants:

6∑
k=0

cxk = c
6∑

k=0

xk

or reorder terms:
n∑

i=1

xi +
n∑

i=1

yi =
n∑

i=1

(xi + yi)

though it’s ugly, you’ll also sometimes see:

n∑
i=1

c = nc

1.6 Product: Π

The product of a sequence of term can be written in product notation (Π).

n∏
i=1

xi = x1 · x2 · x3 · . . . · xn

The product of the integers between 1 and 4 is:

4∏
i=1

i = 1 · 2 · 3 · 4 = 24
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Properties:

n∏
i=1

cxi = cn
n∏

i=1

xi

For k < n,

n∏
i=k

cxi = cn−k+1

n∏
i=k

xi

n∏
i=1

c = cn

No idea why someone would write that last one rather than just an exponent, but people do
all sorts of things that I don’t understand.

1.7 Example questions

In the following questions, where relevant, let x1 = 4, x2 = 3, x3 = 7, x4 = 11, and x5 = 2.

1.
5∑

i=1

i = 1 + 2 + 3 + 4 + 5 = 15

2.
5∏

i=1

i = 1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 = 120

3.
3∑

i=1

7xi = 7(4 + 3 + 7) = 98

4.
5∑

i=1

2 = 2 + 2 + 2 + 2 + 2 = 10

5.
5∏

i=3

(2)xi = 23(7)(11)(2) = 1232
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2 Functions

2.1 Definition of a function

A function f takes each element in the set X (called its domain) and assigns it a unique
element in the set Y (called its codomain). We write that as f : X → Y , and say “the
function f maps each element of X to an element of Y ”.

Example: Say that X is the set of natural numbers, N, and Y is the set of real numbers,
R. Then an example of a function is f(n) = n

2
. Question: Reassure yourself that every

value this function outputs will be a real number. Then check that it’s a function.

Example that doesn’t work: We can never allow a function to have f(x) = y1 and
f(x) = y2 for y1 6= y2. A function can’t take one number x and map it onto two different
numbers, y1 and y2. So a legal function is

f(x) =

{
x x 6= 2

3 x = 2

But an illegal function would be

f(x) =


x x 6= 2

3 x = 2

4 x = 2

Notation: Functions represented this way are called “piecewise functions”.

Rule: You might remember the vertical line test. If we draw out an example of a
mapping that violates the definition of a function, with the X values on the x-axis and the Y
values on the y-axis, then we’ll be able to put a vertical line somewhere such that it touches
two values of y. If we can do that, we’re not looking at a function.

When f takes each value in X onto exactly one value in Y , we call f “one-to-one”. We
can also imagine “many-to-one” functions, like f(x) = 2 for x ∈ R. Question: Graph
this function and verify that it passes the vertical line test. Question: If f(x) = 2 is a
“many-to-one” function, try to define a “one-to-many” function. Can you do it?

2.2 Multivariable functions

We will often care about functions that map from combinations of numbers onto combina-
tions of numbers, which are called multivariable functions.
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Notation: we can write R1 instead of R, simply denoting the set of real numbers. Then
R2 denotes the set of pairs of real numbers, R3 is the set of triplets of real numbers, and so
on. In general, Rn is called an n-tuple of real numbers. We often talk about these as be-
ing coordinates in an n-dimensional space of real numbers, so an n-tuple is a point in n-space.

Examples:

• 5 ∈ R1

• (−33.4, 13) ∈ R2

• (42, π, 11
3

) ∈ R3

Some notation: x ∈ X means that x is an element of the set X.

To write a function that maps one variable onto one variable, we can write f : R1 → R1

Example: f(x) = x+ 2. For each x in R1, f(x) assigns the number x+ 2.

You’ll very commonly see functions that map two variables onto two variables, like f : R2 →
R2.

Example (f : R2 → R1): f(x, y) = x2 + y2. For each ordered pair (x, y) in R2, f(x, y)
assigns the number x2 + y2. Notice that x2 + y2 is always just a number in R1, not a pair.

Example (f : R2 → R2): f(x, y) = (x2, y2)

So we can have zany functions that map n-tuples onto m-tuples, for n,m ∈ N. So for exam-
ple f : R2 → R4, like f(x, y) = (x+ y, x− y, x2 + π, −

√
x√
y
). This gets messy in a hurry.

2.3 Domain, Range, and Image

Some functions are defined only on proper subsets of (sets contained within) Rn.

Domain: the set of numbers x in X at which f(x) is defined.

Range: elements of Y assigned by f(x) from elements of X, or

f(X) = {y : y = f(x), x ∈ X}

This is most often used when talking about a function f : R1 → R1.

Image: same as range, but more often used when talking about a function f : Rn → R1.
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2.4 Injection, Surjection, and Bijection

A correspondence c from set S to T is called 1 to 1 or injective if c never maps multiple
elements of S onto the same element of T .

Say S = {1, 2, 3}, T = {A,B,C,D}, and we have
c(1) = A
c(2) = B
c(3) = C

This is a 1-1 function.

Say S = {1, 2, 3}, T = {A,B,C,D}, and we have
c(1) = A
c(2) = B
c(3) = B

This is not a 1-1 function.

A correspondence c from set S to set T is called onto or surjective if every element in T
is mapped to by at least one element in S.

Say S = {1, 2, 3, 4}, T = {A,B,C}, and we have
c(1) = A
c(2) = B
c(3) = C
c(4) = C

This is an onto function.

Is it 1-1? Answer: No, because 3 and 4 both output C.

Say S = {1, 2, 3}, T = {A,B,C,D}, and we have
c(1) = A
c(2) = B
c(3) = C

This is not an onto function.

Is it 1-1? Answer: Yes.

A set relation is called bijective (or, simply, 1 to 1 and onto) if it is injective (1 to 1) and
surjective (onto).

Were any of the examples so far 1-1 and onto? Answer: No.

Say S = {1, 2, 3, 4}, T = {A,B,C,D}, and we have

14



c(1) = A
c(2) = B
c(3) = C
c(4) = D

This is a 1 to 1 and onto function.

Question: Pick any two sets of different sizes, say S = {1, 2, 3}, T = {A,B,C,D}. Find
a bijective mapping from S to T . Answer: It’s not possible. If you’ve found a bijective
mapping between two sets, it means they have the same number of elements.

Question: Connecting this back to functions, consider f : N→ N defined by f(n) = n2. Is
it bijective? Answer: It is 1 to 1, because every natural number has a square, but it is not
onto; for example, no natural number squared equals 5;

√
5 6∈ N.

The inverse of a correspondence c, written c−1, is the correspondence that undoes c. We’ll
talk a lot about inverse functions in the methods sequence.

2.4.1 Example questions

For each of the following, state whether they are one-to-one or many-to-one functions.

1. For x ∈ [0,∞], f(x) = x2 (one-to-one)

2. For x ∈ [−∞,∞], f(x) = x2 (many-to-one)

3. For x ∈ [−3,∞], f(x) = x2 (many-to-one)

4. For x ∈ [0,∞], f(x) =
√
x (one-to-one)

2.5 Exponential Functions

Exponential functions have the form

f(x) = ax

where a is the base, usually a ∈ R, and x is a variable. Such functions represent situations
where growth is proportional to size.

Example: Suppose a country’s GDP is currently 1 dollar, and it grows at 2% every year.
After 1 year, GDP will be

(1 + 0.02) = 1.021

After 2 years, GDP will be

(1 + 0.02)(1 + 0.02) = 1.022

15



After x years, GDP will be

1.02x

Properties:

• axay = ax+y

When multiplying the same base but different exponents, add the exponents.

x3 · x4 = x7

• ax/ay = ax−y

When dividing the same base but different exponents, subtract the exponents.

x5

x2
= x3

• (ax)y = axy

When taking an exponent to the power of some other value, multiply the exponents.

(x3)3 = x9

But notice this is different from x3
3

• a−x = 1
ax

Negative exponents can be expressed in the denominators of fractions.

x−2 =
1

x2

x−3 · x4 =
x4

x3

• a
√
x = x

1
a

Roots can be expressed as fractional exponents.

√
x = x

1
2

• a0 = 1 ∀a

Notation: ∀ means “for all”, ∃ means “there exists”.
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2.5.1 Example questions

1.
(6x3y−4)−2

(3x2y5)−3

=
6−2x−6y8

3−3x−6y−15

=
y833x6y15

62x6

=
33x6y23

62x6

=
33y23

62

=
27y23

36

=
3y23

4

2.
(−3x−4y)−4

(5x−2y3)0

=
(−3x−4y)−4

1

=
(−3)−4x16y−4

1

=
x16

(−3)4y4
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=
x16

81y4

3. ( 5x−4y2

3x−1y−3
)−2

=
5−2x8y−4

3−2x2y6

=
x832

52y4x2y6

=
32x8

52x2y10

=
32x6

52y10

=
9x6

25y10

4. ( 7x3y

2x−5y2
)0 · (4x−3y2)−1

= (4x−3y2)−1

= 4−1x3y−2

=
x3

41y2

18



=
x3

4y2

5.
(8x3y−4)−2

(−4x−1y)−3(2x5y−3)−2

=
8−2x−6y8

(−4)−3x3y−32−2x−10y6

=
y8(−4)3y322x10

82x6x3y6

=
(−4)322x10y11

82x9y6

=
(−4)322xy3

82

=
−64 · 4xy5

64

=
−256xy5

64

= −4xy5

2.6 Polynomials

A monomial is any function of the form f(x) = axk, where k is a nonnegative integer,
a is the coefficient, k is the degree. For example, y = x2, y = −1

2
x3

A polynomial is a sum of (finitely many) monomials. For example, y = −1
2
x3 + 3x2 +

x+ 2, or y = 3x+ 5.
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The degree of a polynomial is equal to its largest exponent (highest degree of its mono-
mial terms). The degree of the example above is 3. Conventionally we write polynomials
with terms in decreasing degree.

A very important problem is solving for the value(s) of x satisfying f(x) = 0. (This is
called “finding roots”, and we’ll do it often when we get to maximization.) There are two
methods to do this for high-degree polynomials:

1. If f is a polynomial of degree 2, use the Quadratic Equation!

• ax2 + bx+ c = 0 implies x = −b±
√
b2−4ac
2a

2. Factor the polynomial.

x3 + 2x2 + x = 0

x3 + 2x2 + x = x(x2 + 2x+ 1)

x3 + 2x2 + x = x(x+ 1)(x+ 1)

so x3 + 2x2 + x iff x = 0 or x+ 1 = 0 =⇒ x = −1

2.7 Logarithms

The log function can be thought of as an inverse for exponential functions. a is referred to
as the “base” of the logarithm. The base a logarithm of y is the exponent to which we
must raise a in order to get y. There are two common logarithms: base 10 and base e. For
example, the statement y = log10(x) means that y is the value that we should raise 10 to in
order to obtain x. So,

1. Base 10: y = log10(x)⇐⇒ 10y = x. The base 10 logarithm is often simply written as
“log(x)” with no base denoted.

2. Base e: y = loge(x) ⇐⇒ ey = x. The base e logarithm is referred to as the “natural”
logarithm and is written as ln(x), pronounced “lawn”.

2.7.1 Properties of logarithmic functions with any base

• loga(a
x) = x

• aloga(x) = x

• log(xy) = log(x) + log(y)

• log(xy) = y log(x)

• log( 1
x
) = log(x−1) = − log(x)

• log(x
y
) = log(x · y−1) = log(x) + log(y−1) = log(x)− log(y)

• log(1) = log(a0) = 0
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2.7.2 Change of base

You can use the change of base formula to switch bases as necessary:

logb(x) =
loga(x)

loga(b)

Example:

log10(x) =
ln(x)

ln(10)

You can use logs to switch between sum and product notation, which will be important
when learning Maximum Likelihood Estimation in POLSCI 599. The log of a product is
equal to the sum of the logs.

log(
n∏

i=1

xi) = log(x1 · x2 · x3 . . . xn)

= log(x1) + log(x2) + log(x3) + . . .+ log(xn)

=
n∑

i=1

log(xi)

2.7.3 Example questions

Solve the following three logarithms

1. log4(16) = log4(4
2) = 2

2. log2(16) = log2(2
4) = 4

3. log 3
2
(27
8

) = log 3
2
(3

3

23
) = 3

Apply the logarithm rules we’ve discussed to write the following expressions as sums of
logarithms.

1. log4(x
3y5) = log4(x

3) + log4(y
5) = 3 log4(x) + 5 log4(y)

2. log(x
9y5

z3
) = log(x9) + log(y5)− log(z3) = 9 log(x) + 5 log(y)− 3 log(z)

3. ln
√
xy = ln

√
x+ ln

√
y = lnx

1
2 + ln y

1
2 = 1

2
(lnx+ ln y)
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2.8 Composite Functions

f : X → Y

g : Y → Z

f ◦ g : X → Z

The composition f ◦ g is the same as writing f(g(y)). For example,

g(x) = x2 + 5x− 3

h(y) = 3(y − 1)2 − 5

(h ◦ g)(−6) =?

g(−6) = (−6)2 + 5(−6)− 3 = 3

h(3) = 3(3− 1)2 − 5 = 7

This is the same as h(g(−6)).

2.9 Functions Over Real Numbers (Plots!)

Let’s take a moment to mention the plots of functions that you’re familiar with. Take an
example of

f : R→ R

Example:

f(x) = 2x+ 1

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

Domain

Im
ag

e
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2.10 Inverse Functions

Similar to the idea we mentioned when talking about correspondences, the inverse of a
function is the mapping that “undoes” that function: where f : X → Y takes a value x and
returns value y, its inverse f−1 : Y → X takes the same value y and returns the original
value x. So the inverse function always satisfies the property:

f−1(f(x)) = f−1(y) = x

The usual procedure for obtaining an inverse of a single variable function is to just switch y
and x in the equation and then isolate for x. So returning to the function above, y = 2x+ 1,
we can obtain the inverse by doing the following:

x = 2y + 1

x− 1 = 2y

y =
x− 1

2

Now let’s use our labels and see if the procedure did what we said it should:

f(x) = 2x+ 1

f−1(x) =
x− 1

2

We said that it should always be true that f−1(f(x)) = x, so let’s try it:

f−1(f(x)) =
(2x+ 1)− 1

2

f−1(f(x)) =
2x

2
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f−1(f(x)) = x

In this case it worked, but unfortunately this isn’t a one-size-fits-all-functions procedure,
because not all functions have inverse functions!

Question: What’s the visual equivalent of the trick we pulled, switching the x and the y?
Try to switch the position of the x and y values in the plot and see if you can tell why this
function has no inverse function.

Question: Draw another valid function that doesn’t have an inverse function.

2.11 Increasing/Decreasing Functions

Increasing:

b > a =⇒ f(b) ≥ f(a)

Strictly Increasing:

b > a =⇒ f(b) > f(a)

Decreasing:

b > a =⇒ f(b) ≤ f(a)

Strictly Decreasing:

b > a =⇒ f(b) < f(a)
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A monotonic function is either increasing or decreasing everywhere. A strictly monotonic
function is either strictly increasing or strictly decreasing everywhere. All strictly monotonic
functions have inverses.

Question: Try to draw a strictly monotonic function that doesn’t have an inverse. Why
can’t you do it?

2.12 Continuous Functions

We’ll talk a lot more about this later, but for now let’s roughly state: a function is contin-
uous if there are no breaks (aka “discontinuities”). Can’t look like this:

The graph above is an example of a piecewise function.

f(x) =


x2 x < 1

0 x = 1

2− x x > 1
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3 Sets

Definition: A set is a collection of distinguishable objects. The objects in a set are called
members or elements. We think of the set itself as one coherent object.

A = {3, apple,Q, 42}

B = {3, elephant,Q, purple} = {elephant,Q, 3, purple}

A 6= B

N,R,Q,Z, · · ·

3.1 Describing a Set

• Cardinality: the number of elements in a set. In the example above, |A| = |B| = 4

• Finiteness: finite sets have a specified number of elements; infinite sets have no limit
on the number of elements

• Countability: countable sets have elements than can be enumerated (e.g. the integers);
uncountable sets’ elements cannot be enumerated (i.e. real numbers from 0 to 1)

• Order: Sets themselves do not capture any notion of orderedness; {0, 1} = {1, 0}. But
there are clever ways to use multiple sets to enforce an order among the elements. So
for the rest of the notes we’re going to finesse this a bit and talk about “ordered sets”,
which are sets that we’ve imposed an order on. We often use these to model situations
where order matters, like in a preference ranking

3.2 Special Sets

Natural Numbers:

N = {1, 2, 3, 4, ...}

Note: sometimes 0 is included in the natural numbers.

Integers:

Z = {...,−2,−1, 0, 1, 2, ...}

Real Numbers (R)
The Empty Set:

∅ = {}
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3.3 Set Notation

English: “x is a member of the set S.”
Math: x ∈ S

English: “x is not a member of the set S.”
Math: x /∈ S

English: “There exists some element x”
Math: ∃x

English: “For all x”
Math: ∀x

English: “The set of all integers greater than 4.”
Math: {x ∈ Z : x > 4}
Or: {x ∈ Z|x > 4}

(I’d get out of the latter habit soon, though, because starting in POLSCI 599 you’ll very
often use vertical bars inside expressions to denote “or”).

English: “All of the elements in the set S are less than 3.”
Math: ∀x ∈ S, x < 3

Question: Translate the following sentences into set notation:

• “The set of all numbers that are less than eight and at least nine”. How many elements
are in this set? Answer: {n ∈ N : n < 8, n > 9} = ∅ and |∅| = 0

• “The set of all functions that have a function inverse” Answer: {f(x) : ∃f−1(x)}

• “The set of all x such that x = 3”. Answer: {x : x = 3} = {3} 6= 3

• “The set of all real numbers x and y such that x+y = 2” Answer: {x, y ∈ R : x+y =
2}
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3.4 Subsets

Definition: For sets A and B, A is a subset of B if every element of A is also an element
of B.

{3, Q} ⊆ {3, Q}

Definition: For sets A and B, A is a proper subset of B if A is a subset of B and A 6= B.
So, ∃b ∈ B such that b ∈ B and b 6∈ A.

{3} ⊂ {3, Q}

3.5 Set operations

Intersection:

A ∩B = {3, Q}

Union:

A ∪B = {3, apple, elephant,Q, 42, purple}

Difference:

A \B = {apple, 42}

B \ A = {elephant, purple}

Symmetric difference:

A \B ∪B \ A = {apple, 42, elephant, purple}

Complement: Ac is everything that isn’t in A (usually out of some much larger set; in
POLSCI 599 you’ll learn about the set of events X as a subset of all of the events Ω that
could possibly have happened in, eg, a statistical experiment)

Summary:

• The complement of a set A (denoted Ac) is the set of all elements of S that do not
belong to A. In terms of events, this is when event A did not happen.

• The intersection of A and B, denoted A ∩ B, is the set of all elements that belong to
both A and B.
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• The union of A and B, denoted A ∪B, is the set of all elements that belong to either
A or B.

• A,B disjoint/mutually exclusive iff A ∩B = ∅

• Unions of multiple sets
⋃n

i=1Ai is similar to summation notation
∑4

i=1 x = x+x+x+x.

• Intersections of multiple sets
⋂n

i=1Ai is similar to the product operator Π4
i=1x = x4.

Figure 1: Illustrating Set Operations

Some important ideas, where A,B are generic sets and C ⊂ A:

• A \ ∅ = A

• A ∪ ∅ = A

• A ∩ ∅ = ∅

• A ∪B = B ∪ A

• A ∩B = B ∩ A

• But it is not generally true that A \B = B \ A

• C \ A = ∅, whereas A \ C 6= ∅

• A ∪ C = A

• A ∩ Ac = ∅
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3.6 Cartesian Product

Definition: The Cartesian product of any two sets is the set containing all possible ordered
pairs (a, b) where a ∈ A and b ∈ B

{(3, 3); (3, elephant); (3, Q); (3, purple); (apple, 3);(apple, elephant); (apple,Q); (apple, purple); (Q, 3);

(Q, elephant); (Q,Q); (Q, purple);(42, 3); (42, elephant); (42, Q); (42, purple), }

R× R = R2

3.7 Interval Notation

Closed Set:

[0, 1] = {x ∈ R : 0 ≤ x ≤ 1}

Open Set:

(0, 1) = {x ∈ R : 0 < x < 1}

3.8 Practice questions

Find the sets that match each of the following statements, where X = {1, 2, 3}, Y =
{A,B, 1, 2}, and Z = {B,C, 3, 4}, and Ω (the set containing every item in the space) is
Ω = {1, 2, 3, 4, A,B,C}.

• X ∪ Y = {1, 2, 3, A,B}

• X ∩ Z = {3} NOTE: it is not just 3. It is {3}.

• (X ∪ Y ) ∩ Z = {1, 2, 3, A,B} ∩ {B,C, 3, 4} = {3, B}

• Ω ∪ ∅ = {1, 2, 3, 4, A,B,C}

• Ω ∪X = {1, 2, 3, 4, A,B,C}

• (X ∪ Y ) ∩ ∅ = ∅

• (X ∪ Y ∪ Z)c = ∅

• ∅c = {1, 2, 3, 4, A,B,C}

• (X ∪ Y ) \ Z = {1, 2, 3, A,B} \ {B,C, 3, 4} = {1, 2, A}
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4 Derivatives

4.1 Limits

Before we can do calculus, we need one more concept in our pockets: the limit. The
limit of a function is a value that its output approaches, but may never reach, as its input
gets closer and closer to some value. Consider the function y = 1

x
, graphed above. As x

increases, y approaches 0, but will never reach it. This suggests the following idea:

lim
x→∞

1

x
= 0

English: “The limit of the function as x approaches infinity is zero.”

We also say

English: “As x becomes arbitrarily close to infinity, y becomes arbitrarily close to zero.”

There’s a formal definition of what “arbitrarily close” means in this context, and that will
be a major topic that you’ll cover in the next few weeks in POLSCI 598.

4.2 Sequences

We need a couple of steps that will especially set up limit theorems in probability. First we
will introduce a “sequence”, then we will think about the limit of a sequence, then we will
think about the limit of a function.
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A sequence of real numbers X = {x1, x2, x3, . . . , xn} is an ordered set of real numbers,
where x1 is the first term in the sequence and xn is the nth term. There may be as many ele-
ments of a sequence as there are natural numbers, so we could have infinitely long sequences
of numbers. We can also write the sequence as {xn}∞n=1, where the subscript and superscript
are read together as “from 1 to infinity.”

Example: How do these sequences behave? Question: Plug 1, 2, 3, 4, and 5 into each of
the following to see what the first five elements in these sequences look like:

1. {an} = {2− 1
n2}

2. {bn} = {n2+1
n
}

3. {cn} = {(−1)n(1− 1
n
)}

The important thing is to get a sense of how these numbers are going to change. Example
1’s numbers seem to come closer and closer to 2, but will it ever surpass 2? Example 2’s
numbers are also increasing each time, but will it hit a limit? What is the pattern in Example
3? Graphing helps you make this point more clearly. See the sequence of n = 1, . . . , 20 for
each of the three examples in the figure below.

4.3 The Limit of a Sequence

The points in a sequence may or may not converge to a limit as n→∞.
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1. Example 1 converges to a limit.

2. Example 2 increases without bound.

3. Example 3 does not converge, and also does not increase without bound, but continues
diverging farther and farther apart

Definition: The sequence {yn} has the limit L

lim
n→∞

yn = L

if for any ε > 0, there is an integer N such that |yn − L| < ε for each n > N .

If L is a limit of {yn}, then we say that {yn} converges to L. The opposite of converging
is diverging.

A sequence is:

• Monotonically Increasing if yn+1 > yn ∀n

• Monotonically Decreasing if yn+1 < yn ∀n

A limit is unique. If {yn} converges, then the limit L is unique.

A sum of converging sequences converges to the sum of their limits. In fact, letting lim
n→∞

yn =

y and lim
n→∞

zn = z, with k, l ∈ R and z 6= 0,

1. lim
n→∞

[kyn + lzn] = ky + lz (we can move constants out of limits)

2. lim
n→∞

ynzn = yz

3. lim
n→∞

yn
zn

=
y

z

Example: (Simplifying a Fraction into Sums) Find the limit of

lim
n→∞

n+ 3

n

At first glance, n+ 3 and n both grow to∞, so it looks like we need to divide infinity by
infinity. However, we can express this fraction as a sum, and then the limits apply separately:

lim
n→∞

n+ 3

n
= lim

n→∞

n(1 + 3
n
)

n
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lim
n→∞

n+ 3

n
= lim

n→∞

(
1 +

3

n

)

lim
n→∞

n+ 3

n
= lim

n→∞
1︸ ︷︷ ︸

1

+ lim
n→∞

(
3

n
)︸ ︷︷ ︸

0

lim
n→∞

n+ 3

n
= 1

The intuitive key is to notice whether one part of the fraction grows “faster” (earlier
in n) than another. If the denominator grows faster to infinity than the numerator, then
the fraction will converge to 0, even if the numerator will also increase to infinity. This will
become extremely important when you learn about estimators in POLSCI 699 semester after
next.

Another good example is on page 181 of Jeff Gill’s 2006 book.

4.4 Limits of a Function

We have now covered functions and limits of sequences, so let’s combine the two topics.

A function f is a compact representation of some behaviour we care about. Like for
sequences, we often want to know if f(x) approaches some number L as its independent
variable x moves to some number c (which is usually 0 or ±∞). If it does, we say that
the limit of f(x), as x approaches c, is L, denoted lim f(x) = L. Notice now we’re not just
permitting x to approach∞, we can ask if the function has a limit at any arbitrary value of x.

For a limit L to exist, the function f(x) must approach L from both the left (increasing
x values) and the right (decreasing x values).

Properties: Let f and g be functions with lim
x→c

f(x) = k and lim
x→c

g(x) = l, and r a constant.

1. lim
x→c

[f(x) + g(x)] = lim
x→c

f(x) + lim
x→c

g(x)

2. lim
x→c

rf(x) = r lim
x→c

f(x)

3. lim
x→c

f(x)g(x) = [lim
x→c

f(x)] · [lim
x→c

g(x)]
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4. lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)
, provided l 6= 0.

Question: (Do first together, and then everyone solve the rest on their own): Find the
following limits, where k, c are constants:

1. lim
x→c

k, Answer: k

2. lim
x→c

x, Answer: c

3. lim
x→2

(2x− 3), Answer: = 2 lim
x→2

x− lim
x→2

3 = 1

4. lim
x→c

xn, Answer: = lim
x→c

x . . . lim
x→c

x = c . . . c︸ ︷︷ ︸
c times

= cn

4.5 Slope and linearity

Linear functions have the form, with m, b ∈ R,

f(x) = mx+ b

A function’s slope is how much f changes when we increase x (i.e. “rise over run”). So
for some fixed point x0 and a change h, (draw it)

rise

run
=
f(x0 + h)− f(x0)

h
=
m(x0 + h) + b− (mx0 + b)

h
=
mh

h
= m

Linear functions are great! Their slope is constant, always equal to the coefficient m. But
what if the function isn’t a line? Then the slope changes depending on the value of x, and
we have to stop at

rise

run
=
f(x0 + h)− f(x0)

h

4.6 Tangent Lines

Our strategy for computing the slope of a curve? Draw a line with the same slope that
intersects the curve. This is called a tangent line, and fortunately for us, we already know
how to compute the slopes of lines!
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4.7 Asymptotes

Similar to the idea of tangent lines, an asymptote to a curve is a line that approaches the
curve arbitrarily closely, so the distance between the line and the curve tends to zero but
never reaches zero.

Question: Looking at the plot can you identify the asymptotes to the function

f(x) =
1

x
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4.8 Derivatives

The derivative of a function (at a point x0) is the slope of the tangent line at that point.
Or, in math:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

The derivative of f at x is its rate of change at x: how much f(x) changes with a change
in x. The rate of change is a fraction – rise over run – but because not all lines are straight
and the rise over run formula will give us different values depending on the range we examine,
we need to take a limit.

Definition: Let f be a function whose domain includes an open interval containing the
point x. The derivative of f at x is given by

d

dx
f(x) = lim

h→0

f(x+ h)− f(x)

(x+ h)− x
= lim

h→0

f(x+ h)− f(x)

h

If f ′(x) exists at a point x0, then f is said to be differentiable at x0. That also implies
that f(x) is continuous at x0.

A walkthrough that’s pitched similarly to math camp is around page 181 of Gill’s book.

4.9 Some Notation

Several different ways to denote the slope of a function y = f(x) at a given point.

Leibniz’s notation:

dx

dy

Lagrange’s notation:

f ′(x)

Newton’s notation:

ḟ(x)

We read Leibniz’s notation notation as “the derivative of x with respect to y”.

For functions of one variable, Liebniz’s notation is a lot of extra symbols, so you’ll probably
most often encounter Lagrange’s notation. But for multivariate functions, Liebniz’s notation
is essential, so it’s important to be able to understand both of them? Newton’s notation is
very common overall but pretty rare in political science, because it’s conventionally reserved
for derivatives with respect to time. See Wikipedia for more information.
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4.10 Properties of Derivatives

Suppose that f and g are differentiable at x and that α is a constant. Then the functions
f + g, αf, fg, f

g
(provided g(x) 6= 0) are also differentiable at x.

4.10.1 Constant rule

[kf(x)]′ = kf ′(x)

4.10.2 Derivative of a constant

d

dx
(c) = 0

4.10.3 Sum rule

[f(x)± g(x)]′ = f ′(x)± g′(x)

4.10.4 Product rule

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x)

4.10.5 Quotient rule[
f(x)

g(x)

]′
=
f ′(x)g(x)− f(x)g′(x)

[g(x)]2
, g(x) 6= 0

4.10.6 Power Rule

(xk)′ = kxk−1

This last rule is the real workhorse of derivatives, so let’s check an example of it.

f(x) = x3

Using the power rule,

f ′(x) = 3 · x3−1

f ′(x) = 3x2
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Now, by our definition of a derivative, the slope of the function at a point x0 is equal to:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

= lim
h→0

(x0 + h)3 − (x0)
3

h

= lim
h→0

(x0 + h)(x0 + h)(x0 + h)− x30
h

= lim
h→0

(x20 + hx0 + hx0 + h2)(x0 + h)− x30
h

= lim
h→0

(x20 + 2hx0 + h2)(x0 + h)− x30
h

= lim
h→0

x30 + 2hx20 + h2x0 + hx20 + 2h2x0 + h3 − x30
h

= lim
h→0

x30 + 3x20h+ 3x0h
2 + h3 − x30

h

= lim
h→0

3x20h+ 3x0h
2 + h3

h

= lim
h→0

(
3x20 + 3x0h+ h2

)
= 3x20

It worked for k = 3. But obviously we do not want to have to do that every single time
we want to take a derivative, so the power rule is crucial. Thankfully we can prove that it
holds for any k ∈ N.

In class we also did a second example, with f(x) = 10x2. By applying the power rule
(multiply it by the exponent, then subtract 1 from the exponent), we get the result f ′(x) =
20x. Now using the definition of a derivative,
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f ′(x) = lim
h→0

10(x+ h)2 − 10(x)2

h

f ′(x) = lim
h→0

10(x+ h)(x+ h)− 10x2

h

f ′(x) = lim
h→0

10(x2 + 2xh+ h2)− 10x2

h

f ′(x) = lim
h→0

10x2 + 20xh+ 10h2 − 10x2

h

f ′(x) = lim
h→0

20xh+ 10h2

h

f ′(x) = lim
h→0

(
20x+ 10h

)

f ′(x) = 20x

So in this case too, the two methods agree.

4.11 Some common derivatives

1. d
dx

(x) = 1 (Power rule)

2. d
dx

(ex) = ex (We’ll discuss this in 598)

3. d
dx

1
x

= − 1
x2 (Quotient rule or power rule)

4. d
dx

(ln(x)) = 1
x
, x > 0 (We’ll discuss this in 598)
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4.12 Derivative examples and practice

There are two good reminder sheets for differentiation at Derivative Rules, short and Deriva-
tive Rules, long.

Examples: Find the derivatives of the following functions (2 together, 3 on your own):

1. d
dx

(3x− 1) = d
dx

(3x)− d
dx

(1)

d
dx

(3x− 1) = 3

What does this mean again? It says the instantaneous rate of change of the function
at any point x is 3. Huh? The rate of change of this function is 3 everywhere? Draw
it – does that make sense as a derivative?

2. d
dx

(5x+ 2) = d
dx

(5x)− d
dx

(2)

d
dx

(5x+ 2) = 5

3. f(x) = x2 − x+ 3

f ′(x) = (x2 − x+ 3)′ = (x2)′ − (x)′ + (3)′ = 2x− 1 + 0 = 2x− 1

4. Try both terms individually before trying this one: f(x) = (3x2 − 4x+ 1)(8x+ 7)

f ′(x) = ((3x2− 4x+ 1)(8x+ 7))′ = (3x2− 4x+ 1)′ · (8x+ 7) + (3x2− 4x+ 1) · (8x+ 7)′

= (6x− 4 + 0)(8x+ 7) + 8(3x2 − 4x+ 1) = 48x2 + 42x− 32x− 28 + 24x2 − 32x+ 8 =
72x2 − 22x− 20

5. f(x) =
3x− 1

x

By the quotient rule:

f ′(x) =

(
3x− 1

x

)′
=

(3x− 1)′ · x− (3x− 1) · x′

x2
=

3x− 3x+ 1

x2
= 1

x2

By the product rule:

f ′(x) =

(
(3x− 1)(x−1)

)′
= (3x− 1)′(x−1) + (3x− 1)(x−1)′ = 3x−1 − (3x− 1)(x−2) =

3
x
− 3

x
+ 1

x2 = 1
x2
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6. f(x) = (x3)(2x4)

f ′(x) = ((x3)(2x4))′ = (x3)′ · 2x4 + x3 · (2x4)′ = 3x2 · 2x4 + x3 · 8x3 = 6x6 + 8x6 = 14x6

7. f(x) = 1
x2

f ′(x) = −2x−3

4.13 Composite Functions and the Chain Rule

Despite all the rules we have covered so far, many functions will still not fit neatly in each
case immediately. Instead, they will be functions of functions. For example, the difference
between x2 + 12 and (x2 + 1)2 means that the sum rule can be easily applied to the former,
while it is actually not obvious what to do with the latter.

As mentioned in the previous sections, composite functions are formed by substituting
one function into another and are denoted by

(f ◦ g)(x) = f(g(x))

.
Chain Rule: Let y = (f ◦ g)(x) = f(g(x)). The derivative of y with respect to x is

d

dx

(
f(g(x))

)
= f ′(g(x)) · g′(x)

The chain rule can be thought of as the derivative of the “outside” times the derivative of
the “inside”, remembering that the derivative of the outside function evaluated at the value
of the inside function. It can also be written as

dy

dx
=

dy

dg(x)
· dg(x)

dx

This expression does not imply that the dg(x)s cancel out, as in fractions. They are part
of the derivative notation and you cannot separate them out or cancel them.

Example (composite exponent): Find f ′(x) for f(x) = (3x2 + 5x− 7)6.

We have a generalized power rule: If f(x) = [g(x)]p for any rational number p,

f ′(x) = p[g(x)]p−1g′(x)

6 · (3x2 + 5x− 7)5 · (6x+ 5)

Examples:
Find the derivative for the following (2 together, 3 on your own):
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1. f(x) = (6x2 + 7x)4

f ′(x) = 4(6x2 + 7x)3(12x+ 7) = 4(12x+ 7)(6x2 + 7x)3

2. g(t) = (4t2 − 3t+ 2)−2

g′(t) = −2(4t2 − 3t+ 2)−3(8t− 3) = −2(8t− 3)(4t2 − 3t+ 2)−3

3. f(x) = (3x+ 1)2

f ′(x) = 2(3x+ 1)(3) = 6(3x+ 1)

4. f(x) =
√

13x2 − 5x+ 8

f ′(x) = ((13x2 − 5x+ 8)
1
2 )′ = 1

2
(13x2 − 5x+ 8)

1
2
−1(13x2 − 5x+ 8)′

=
1

2
(13x2 − 5x+ 8)−

1
2 (26x− 5)

=
26x− 5

2(13x2 − 5x+ 8)
1
2

=
26x− 5

2
√

13x2 − 5x+ 8

5. d
dx

(
3x−1
5x+2

)
= d

dx
(3x− 1)(5x+ 2)−1

= (3x− 1)′(5x+ 2)−1 + (3x− 1)((5x+ 2)−1)′

= (3)(5x+ 2)−1 − 5(3x− 1)(5x+ 2)−2

= 3
5x+2
− 5(3x−1)

(5x+2)2

= 3(5x+2)
(5x+2)2

− 5(3x−1)
(5x+2)2
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= 15x+6−15x+5
(5x+2)2

= 11
(5x+2)2

4.14 Derivatives of natural logs and the exponent

e is the constant such that

(ex)′ = ex

We’ll talk more about this somewhat mistifying claim in 598.

ln(x) is continuous and differentiable, and its first derivative is

ln(x)′ =
1

x

Also, when these are composite functions, it follows by the generalized power rule that

(eg(x))′ = eg(x) · g′(x)

(ln g(x))′ =
g′(x)

g(x)

if g(x) > 0.

Derivative of ef(x):

1. Derivative of ex is itself: d
dx
ex = ex

2. Same thing if there were a constant in front: d
dx
aex = aex

3. Same thing no matter how many derivatives there are in front: d
dx

(
d
dx

(
aex
))

= aex

4. Chain Rule: When the exponent is a function of x, take the derivative of that function
and multiply d

dx
eg(x) = eg(x)g′(x).

Examples:
Find the derivatives of the following:

1. f(x) = e−3x = −3e−3x

2. f(x) = ex
2

= 2xex
2
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Derivative of logarithms:

1. d
dx

log x = 1
x

2. Exponents become multiplicative constants: d
dx

log xk = d
dx
k log x = k

x

3. Chain rule: d
dx

log u(x) = u′(x)
u(x)

4. For any positive base b, d
dx
bx = (log b)(bx).

Examples:
Find the derivatives of the following:

1. y = ln(x2 + 9)

Let u(x) = x2 + 9. Then u′(x) = 2x and dy
dx

= u′(x)
u(x)

= 2x
(x2+9)

2. f(y) = ln(1− 5y2 + y3)

f ′(y) = 1
1−5y2+y3

(−10y + 3y2) = −10y+3y2

1−5y2+y3

3. y = ln(lnx)
Let u(x) = ln x. Then u′(x) = 1

x
and dy

dx
= 1

(x lnx)

4. y = (lnx)2

Using the generalized power rule: dy
dx

= 2 lnx
x

5. y = ln ex

Let u(x) = ex. Then u′(x) = ex and dy
dx

= u′(x)
u(x)

= ex

ex
= 1.

Alternatively, just notice ln(ex) = x.

4.15 Second Derivatives

What if we take the derivative of a derivative?

f(x) = x3

f ′(x) = 3x2

f ′′(x) = 6x

The second derivative gives us the slope of a function’s derivative (i.e. the rate of change
of the rate of change or how fast the rate of change is changing). In Leibniz notation, the

second derivative is denoted d2y
dx2 .
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We had mentioned that if a function is differentiable at a given point, then it must be
continuous. Further, if f ′(x) is itself continuous, then f(x) is called continuously differen-
tiable. We will use this very heavily in 598. A function that is continuously differentiable
infinitely is called “smooth”. Some examples: f(x) = x2, f(x) = ex.
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5 Integrals

5.1 Antiderivatives

If we can take the derivative of a function, maybe we can reverse the process too, and find
the function F for which f is its derivative. An antiderivative answers the question: what
is the function F (x) that has the derivative f(x)?

Example:

f(x) = 3x2

F (x) = x3 + c

Notice that we had to add a value c, called the “constant of integration”, because a
constant could have been eliminated by the process of taking a derivative.

Example: What might we have taken the derivative of to obtain the following function?

1. f(x) = 9x8 + 2x+ 1 Answer: F (x) = x9 + x2 + x+ c

We know from derivatives how to manipulate F (x) to get f(x). But what procedure do
we follow to get F (x) back from f(x)? For that, we will need a new symbol, which we will
call indefinite integration.

5.2 Indefinite Integral

The indefinite integral of f(x) is written

F (x) =

∫
f(x)dx

and is equal to the antiderivative of f(x). While there is only a single derivative for any
function, there are multiple antiderivatives: one for any arbitrary constant c. For example,
1
3
x3 − 4x and 1

3
x3 − 4x+ 1 are both antiderivatives of f(x) = (x2 − 4).

5.3 Common Rules of Integration

Let’s just start by setting out the rules of integration that we know will have to be true in
order for them to reverse the process of taking a derivative.

1. Constants:
∫
af(x)dx = a

∫
f(x)dx

2. Sums:
∫

[f(x) + g(x)]dx =
∫
f(x)dx+

∫
g(x)dx
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3. Reverse Power-rule:
∫
xndx = 1

n+1
xn+1 + c

4. Similar rule for e:
∫
exdx = ex + c

5. Recall the derivative of ln(x) is 1
x
, and so:

∫
1
x
dx = ln |x|+ c

6. Reverse chain rule:
∫
ef(x)f ′(x)dx = ef(x) + c

7. More reverse chain rule:
∫

[f(x)]nf ′(x)dx = 1
n+1

[f(x)]n+1 + c

8. Somehow even more reverse chain rule:
∫ f ′(x)

f(x)
dx = ln f(x) + c

Examples:

1.
∫

3x2dx
Take the constant out: = 3 ·

∫
x2dx

Apply the power rule: = 3 · x2+1

2+1
= x3

Add a constant to the solution: = x3 + c

2.
∫

(2x+ 1)dx
Apply the sum rule: =

∫
2xdx+

∫
1dx

Take the constant out: 2 ·
∫
xdx+

∫
1dx

Apply the power rule: = 2 · x1+1

1+1
+ c1 +

∫
1dx

Integral of a constant is just x+ c: = 2 · x2

2
+ c1 + x+ c2

Simplify: = x2 + x+ c

3.
∫

(5x+ 5)dx =
∫

5xdx+
∫

5dx

= 5
2
x2 + 5x+ c

4.
∫

(6x+ x2)dx =
∫

5xdx+
∫
x2dx

= 6
2
x2 + 1

3
x3 + c

= 3x2 + 1
3
x3 + c

5.
∫

(12x3 + 9x2)dx =
∫

12x3dx+
∫

9x2dx

∫
4x4dx+ 3x3 + c
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6.
∫

(10y)dy = 5y2 + c

7.
∫

(10y)dx = 10xy + c

Now everyone try the following questions on your own. First, take the derivative of the
given function. Then, apply the integral to the derivative. By applying the derivative and
then the integral, you want to show that you recover the original function:

1. f(x) = x3 + 5x− 4

f ′(x) = 3x2 + 5

∫
f ′(x)dx =

∫
(3x2 + 5)dx

∫
f ′(x)dx = x3 + 5x+ c

2. f(x) = 8x4 + 2x3 − 4x+ 1

f ′(x) = 32x3 + 6x2 − 4

∫
f ′(x)dx = 32

4
x4 + 6

3
x3 − 4x+ c

∫
f ′(x)dx = 8x4 + 2x3 − 4x+ c

3. f(y) = 7y
3
2 − 9

f ′(y) = 21
2
y

1
2

∫
f ′(y)dx = 2

3
21
2
y

3
2 + c

∫
f ′(y)dx = 21

3
y

3
2 + c

∫
f ′(y)dx = 7y

3
2 + c

4. f(x) = 2z

5. I dare you to pick any polynomial and try it!
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5.4 Integrals

We built up derivatives as the slope of the line tangent to a curve. Then we introduced this
thing called the antiderivative, and we called it the “integral”. So what exactly does this
function mean, apart from undoing derivatives?

Suppose we want to compute the area beneath an arbitrarily squiggly function. A natural
idea is the Riemann Sum: we draw a bunch of rectangles under the curve, and just add
up the total area of those rectangles.

−
Riemann Sum

As we decrease the width of the rectangles, the sum of their areas approaches the area
under the curve. As the limit of the width of each rectangle approaches zero, the Riemann
Sum of a curve from x = a to x = b approaches the definite integral, so:

lim
w→0

N∑
i=1

f(xi) · w =

∫ b

a

f(x)dx

5.5 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus formalises what we’ve just seen: that integrals are
antiderivatives. Let the function f be bounded on [a, b] and continuous on (a, b), and F any
function that is continuous on [a, b] such that F ′(x) = f(x) on (a, b). Then

∫ b

a

f(x)dx = F (b)− F (a)

So the procedure to calculate a simple definite integral
∫ b

a
f(x)dx is then a) finding the

indefinite integral F (x) and b) evaluating F (b)− F (a).
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English: Integrals and derivatives are reverse operations. Finding the area under a curve
is equivalent to taking the antiderivative.

Note: For definite integrals, we know exactly the value! So we do not have to add a con-
stant. We only add a constant to indefinite integrals.

5.6 Common Rules for Definite Integrals

Having seen the area interpretation of the definite integral, we can state some more rules.

1. Not all intervals have area. For example:
∫ a

a
f(x)dx = 0

2. Reversing the bounds changes the sign of the integral:
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx

3. Sums can be separated into their own integrals:
∫ b

a
[αf(x) + βg(x)]dx = α

∫ b

a
f(x)dx+

β
∫ b

a
g(x)dx

4. Areas can be combined as long as limits are linked:
∫ b

a
f(x)dx+

∫ c

b
f(x)dx =

∫ c

a
f(x)dx

5.
∫ b

a
1dx = b− a

6.
∫ b

a
xdx = 1

2
(b2 − a2)

7. Integral of a constant k ∈ R:
∫ b

a
kdx = k(b− a)

Examples:

1. Example of property 1:
∫ 1

1
3x2dx = 0

2. Example of property 2:
∫ 1

0
x3dx =

[
1
4
x4
]1
0

= 1
4
(1)4 − 1

4
(0)4

= 1
4

In contrast,
∫ 0

1
x3dx =

[
1
4
x4
]0
1

= 1
4
(0)4 − 1

4
(1)4

= −1
4
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3. Example of property 3:
∫ 3

1
(4x2 + 2x3)dx =

∫ 3

1
(4x2)dx+

∫ 3

1
(2x3)dx

= 4
∫ 3

1
(x2)dx+ 2

∫ 3

1
(x3)dx

= 4
[
1
3
x3
]3
1

+ 2
[
1
4
x4
]3
1
dx

= 4
3

(
33 − 13

)
+ 1

2

(
34 − 14

)
= 4

3
· 26 + 1

2
· 80

= 224
3

4.
∫ 4

0
(2x+ 1)dx = 20

5. Find the area under the function f(x) = 2x between x = 0 and x = 3. Use both the
FTC and the formula for the area of a triangle, A = 1

2
w · h Answer: 9

6.
∫ 3

1
3x2dx =

[
x3
]3
1

= 26

More Integration Rules: Integration Rules (with bonus derivative rules on page 1!).

5.7 Integration by Substitution

Our operation for computing a definite integral was to first find the indefinite integral, and
then plug in the bounds and subtract.

However, sometimes the integrand (the thing that we are trying to take an integral of)
doesn’t appear integrable using the rules we’ve discussed for antiderivatives. In many of
these cases we can get the result using integration by substitution, which is analogous to the
Chain Rule, and is also called u-substitution:

∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du where u = g(x)

So, F [u(x))] is the antiderivative of g. We can then write∫
g(x)dx =

∫
f [u(x)]u′(x)dx =

∫
d

dx
F [u(x)]dx = F [u(x)] + c
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To summarize, the procedure to determine the indefinite integral
∫
g(x)dx by the method

of substitution:

1. Identify some part of g(x) that might be simplified by substituting in a single variable
u.

2. Determine if g(x)dx can be reformulated in terms of u and du.

3. Solve the indefinite integral.

4. Substitute back in for x

Substitution can also be used to calculate a definite integral. Using the same procedure
as above, ∫ b

a

g(x)dx =

∫ d

c

f(u)du = F (d)− F (c)

where c = u(a) and d = u(b).

How do you know when to use u-substitution? A rule of thumb, ask yourself what por-
tion of the integrand has an inside function that is making the integral difficult to apply our
integration rules to. If there is an inside function that’s making things difficult, it’s a good
candidate to substitute out.

Another thing to keep an eye on is that, after we perform the substitution, every x in
the integral (including the x in the symbol dx) needs to disappear, and the only variables
left should be u’s (including a du).

Example 1:
∫

3(8y − 1)e4y
2−ydy

Choose the substitution u = 4y2 − y so du = (8y − 1)dy.

We can factor out the constant so the integral becomes∫
3(8y − 1)e4y

2−ydy ⇒ 3

∫
eudu

= 3eu + c

= 3e4y
2−y + c

Example 2:
∫

1
1−2xdx

Choose the substitution u = 1− 2x so du = −2dx.
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So the integral becomes∫
1

u
(−1

2
du) = −1

2

∫
1

u
du

= −1

2
ln|u|+ c

= −1

2
ln|1− 2x|+ c

The result of this example can be generalised: if we want to find
∫

1
ax+b

dx, the substitution

u = ax + b leads to 1
a

∫
1
u
du which equals 1

a
ln|ax + b| + c. This means, for example, that

when faced with an integral such as
∫

1
3x+7

dx, we can immediately write down the answer

as 1
3
ln|3x+ 7|+ c.

5.8 Integration by Parts

We use integration by parts to integrate products of functions.

∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx

If we use some simple substitutions, this rule gets much easier to use. Substitute

u = f(x) v = g(x)

du = f ′(x)dx dv = g′(x)dx

Then,∫
udv = uv −

∫
vdu

Example: Evaluate
∫
xexdx. We want to separate x from ex. So choose the labels

u = x

yielding

du = dx

and then we want
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dv = exdx

in which case

v = ex

Now, following the formula for integration by parts,

∫
xexdx =

∫
udv

∫
xexdx = uv −

∫
vdu

Plugging in u and v,

∫
xexdx = xex −

∫
exdx

∫
xexdx = xex − ex + c

Example: Evaluate
∫
xe6xdx

Choose

u = x dv = e6xdx

du = dx v =

∫
e6xdx =

1

6
e6x

Then the integral is∫
xe6xdx =

x

6
e6x −

∫
1

6
e6xdx

=
x

6
e6x − 1

36
e6x + c
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6 Linear Algebra

6.1 Vectors

Let’s think of vectors in the following way: they are a data storage device that hold num-
bers in an ordered list. These lists come in two formats: row vectors and column vectors.

Example: x =
[
1 3 7

]

a =


x1
x2
...
xn


b =

[
x1 x2 . . . xn

]
Turning a row vector v into a column vector (taking the leftmost element and putting it on
top, then the second leftmost element and putting it second from top, and so on), or vice
versa, is called taking the transpose and is denoted v′ or vT . In the above example, a = b′.

It is very common to use an n-dimensional vector to associate one number with each of
n dimensions in Rn.

Example: Draw the vector
[
2 1

]
starting from (0, 0).

In contrast to vectors, scalars are individual numbers. So x ∈ R is a scalar, while x =[
−1 π

]
is a vector, x ∈ R2.

Like with sets, we call the components of a vector elements.

Note: Now we’ve talked about two different list-like storage devices, namely vectors and
sets. Let’s talk for a moment about the differences between the two.

1. Unlike sets, the elements of a vector are always numbers (or variables that stand in for
numbers). It’s incoherent to talk about a vector that contains the element elephant,
like our example of a set did.

2. This means that, unlike with sets, there’s no such thing as “a vector of vectors”.

3. Unlike with sets, the order of a vector really matters. It is absolutely fixed. So we can
refer to the elements of vectors using subscripts. For the vector x =

[
−1 π

]
, x1 = −1
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and x2 = π.

Rejoice, for in a way vectors are much simpler than sets.

6.1.1 Vector Algebra

Vector addition (and vector subtraction) is simply the addition of the corresponding
elements in two vectors. If two vectors, u and v, have the same dimension n (by which I mean,
contain the same number of numbers — I thank an anonymous benefactor for suggesting the
word “dimension”, which was a surprisingly tricky piece of terminology), they can be added
together:

u + v =
[
u1 + v1 u2 + v2 . . . un + vn

]
u− v =

[
u1 − v1 u2 − v2 . . . un − vn

]
Example: If u =

[
1 2 3

]
and v =

[
3 −1 π

]
then

u + v =
[
1 2 3

]
+
[
3 −1 π

]

u + v =
[
1 + 3 2− 1 3 + π

]

u + v =
[
4 1 3 + π

]
Vector addition and vector subtraction are only defined for vectors of the same dimension-
ality. So we cannot calculate

[
2 1

]
−
[
0 0 5

]
.

We can also interpret vector addition geometrically: it’s the sum of their extent in every
dimension that they’re defined on. (Draw it for

[
2 1

]
+
[
3 1

]
)

Scalar multiplication of vectors involves multiplying vectors by scalars. The product
of a scalar c and vector v is:

cv =
[
cv1 cv2 . . . cvn

]

Notice that vector subtraction can be defined using vector addition and scalar multiplication:
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u− v = u + (−1)v

Questions: Let a =
[
1 3 7

]
, b =

[
−5 3 2

]
, and c = 5. Calculate the following:

• 5a Answer:
[
5 15 35

]
• 2a + b Answer:

[
−3 9 12

]
• −1a− b Answer:

[
4 −6 −9

]
6.1.2 Dot products, lengths, distances

The dot product (also called the inner product) of two vectors is the sum of the products
of their corresponding elements, so

a · b =
∑
i

ai · bi

For column vectors, this is equal to a′b, recalling that ′ indicates the transpose. We will
see why this is true when we study matrix multiplication.

Again, you can see that the dot product of two vectors is only defined when those vectors
have the same number of elements:

u · v = u1v1 + u2v2 + . . .+ unvn =
n∑

i=1

uivi

We call two vectors u and v orthogonal (or perpendicular) if u · v = 0

Example: To check the orthogonality of
[
2 3

]
and

[
−3 2

]
, we just verify that their dot

product is equal to zero. Draw them.

Question: Come up with two vectors of dimension 2 that have a dot product equal to zero.
Now draw them. Can you see the reasoning behind the definition?

A norm is a function that maps vectors onto real numbers in a way that captures the idea
of distance or length. You’ll talk more about several different norms in 598, each of which
tries to capture a different idea of length. The most common is the Euclidean norm or
2-norm:

58



||x||2 =

( m∑
i=1

|xi|2
) 1

2

(Note the absolute value sign is there because there are norms which raise each index to an
odd power)

Suppose x =
[
4 3

]
. Then

||x||2 =
√

42 + 32

||x||2 =
√

16 + 9

||x||2 =
√

25

||x||2 = 5

Why does this capture an idea of distance? Remember the idea that each part of the vector
represents a distance in a different dimension. (Example: draw out the vector in 2 dimen-
sions and show it’s the distance between the points on each axis).

In 2 dimensions this is just our old friend the Pythagorean theorem: a2 + b2 = c2.

Another way of writing the 2-norm is as a dot product. Consider the vector a =
[
a1 a2

]
.

According to the 2-norm, we said that the length of the vector a is

||a||2 =
√
a21 + a22

Now notice that this is exactly what you get by computing the following:

√
a · a =

√
a1 · a1 + a2 · a2
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√
a · a =

√
a21 + a22

√
a · a = ||a||2

Example: a =
[
1 3 5

]
. Length of a =

√
a · a =

√
12 + 32 + 52 =

√
35.

To find the Euclidean distance between two vectors a and b, denoted ‖a− b‖, we take
the difference between them and then apply the 2-norm, so ‖a− b‖ =

√
(a− b) · (a− b).

Example: Find the distance between u =
[
1 2

]
and v =

[
4 5

]
:

|u− v| = ||u− v||2

|u− v| =
√

(1− 4)2 + (2− 5)2

|u− v| =
√

9 + 9

|u− v| =
√

18

Example: Find the distance between u =
[
1 2 3

]
and v =

[
2 4 6

]
:

|u− v| =
√

(1− 2)2 + (2− 4)2 + (3− 6)2

|u− v| =
√

(−1)2 + (−2)2 + (−3)2

|u− v| =
√

1 + 4 + 9

|u− v| =
√

14

Practice questions: Let a =
[
2 1 2

]
, b =

[
3 4 5

]
. Calculate the following:

60



1. a− b =
[
−1 −3 −3

]
2. a · b = 6 + 4 + 10 = 20

Now let u =
[
7 1 −5 3

]
,v =

[
9 −3 2 8

]
,w =

[
1 13 −7 2 15

]
, and c = 2. Cal-

culate each of the following, or explain why they cannot be calculated:

1. u− v =
[
−2 4 −7 −5

]
2. cw =

[
2 26 −14 4 30

]
3. u · v = 63− 3− 10 + 24 = 74

4. w · v = undefined

6.1.3 Linear combinations, span of a set

Consider n ∈ N vectors x1,x2, . . . ,xn. A vector y is called a linear combination of the
vectors x1,x2, . . . ,xn if ∃n scalars c1, c2, . . . , cn such that y = c1x1 + c2x2 + . . .+ cnxn.

Example:
[
9 13 17

]
is a linear combination of the following three vectors:

[
1 2 3

]
,[

2 3 4
]
, and

[
3 4 5

]
. This is because

[
9 13 17

]
= (2)

[
1 2 3

]
+ (−1)

[
2 3 4

]
+

(3)
[
3 4 5

]
Questions:

• Is u =
[
1 2

]
a linear combination of v =

[
2 1

]
and w =

[
1 −1

]
? Answer: Yes,

u = v −w.

• Is u =
[
1 2 5

]
a linear combination of v =

[
1 2 1

]
and w =

[
2 4 2

]
? Answer:

No.

• Is u =
[
1 1 1

]
a linear combination of v =

[
1
2

1
2

1
2

]
and w =

[
0 0 100

]
? An-

swer: Yes, u = 2v + 0w.

• Is u =
[
π π 2π 4π

]
a linear combination of v =

[
π π 0 0

]
and w =

[
0 0 1

2
π 0

]
and x =

[
0 0 2π 8π

]
? Answer: Yes, u = v + 2w + 1

2
x.
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A set of vectors is called linearly independent if none of the vectors is a linear combina-
tion of any of the other vectors. A set of vectors {v1,v2, . . . ,vk} is called linearly independent
if the only solution to the equation

c1v1 + c2v2 + . . .+ ckvk = 0

is c1 = c2 = . . . = ck = 0. If another solution exists, the set of vectors is called linearly
dependent. So, a set S of vectors is linearly dependent if at least one of the vectors in S
can be written as a linear combination of the other vectors in S.

Notice that linear independence and linear dependence are defined only for collections of
vectors that have the same dimension. It’s incoherent to ask if

[
1 2

]
and

[
33 33 33

]
are

linearly independent, because the addition of these vectors is not defined.

Question: Are the following sets of vectors linearly independent?

1. a =
[
2 3 1

]
, b =

[
4 6 1

]
, Answer: Yes. But if we switched the last element in b

to a 2 then a = 1
2
b.

2. a =
[
1 0 0

]
, b =

[
0 5 0

]
, c =

[
10 10 0

]
, Answer: No, 10a + 2b = c.

3. a =
[
1 0

]
and b =

[
0 1

]
Answer: Yes.

4. a =
[
0 1 2 3

]
, b =

[
0 3 6 9

]
, c =

[
−1 2 4 6

]
. Answer: No, b = 3a.

The set of all linear combinations of a collection of vectors is called their span. A set B
of linearly independent vectors is called the basis of a set V of vectors1 if the span of B is
equal to V .

Example: e1 =
[
1 0

]
and e2 =

[
0 1

]
span the set of all dimension 2 vectors. To under-

stand why, consider any generic dimension two vector, a =
[
a1 a2

]
, with a1, a2 ∈ R. No

matter the value of a1 and a2, we can always write a = a1e1 + a2e2. So any dimension 2
vector is a linear combination of e1 and e2. For this reason, the set of vectors ei for each i
in {1, 2, . . . , n} (the set of unit vectors) is treated as the default basis for Rn, n ∈ N.

We can understand this visually (Draw it).

1Actually, a vector space, which we won’t define in these notes.
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Question: Can we increase the size of the set that is being spanned by introducing
linearly dependent vectors into our basis?

Answer: Nope.

We’ll talk a lot more about this in 598.

6.2 Matrices

A matrix is a collection of real numbers arranged in a grid of m rows and n columns. In my
humble opinion matrices are the absolute core of empirical social science, because datasets
are simply matrices. Every empirical analysis in every published paper you will ever read is
a mathematical statement about the characteristics of a matrix. Many of the assumptions
of common methods are explicitly stated as conditions that a matrix of data must fulfill in
order for the tool to be applicable.

We can also talk about one number in a matrix as being an element of the matrix. Like
vectors, we use subscripts to refer to elements, but now we need two subscripts: one to
identify the row and another to identify the column, and typically we use the un-bolded
lowercase version of whatever bold uppercase letter we’re using for the matrix. For example,
in the following matrix,

A =

[
4 3
2 1

]

we would say that a11 = 4, a12 = 3, a21 = 2, a22 = 1. The subscript is called an index, so
we would say that the number 2 is at “index (2,1) of A”.

Clearly matrices are closely related to vectors: in fact, you might think of vectors as a special
case of matrices, since a column vector of dimension k is a k × 1 matrix, while a row vector
of dimension k is a 1× k matrix.

6.3 Matrix properties

Scalar multiplication for matrices is similar to our definition for vectors: for the matrix

A =

[
a b
c d

]
, then rA =

[
ra rb
rc rd

]

Example: To multiply the example matrix above by 3,
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3A = 3

[
4 3
2 1

]

3A =

[
3 · 4 3 · 3
3 · 2 3 · 1

]

3A =

[
12 9
6 3

]

Matrix addition and matrix subtraction are defined exactly as you would hope: for
matrices Am×n and Bm×n, with

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn


their sum is simply the sum of the corresponding elements, so

A + B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


Notice that matrix addition is only defined for matrices of the same shape.

Matrix multiplication is defined as follows: for Am×n and Bn×k, with

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , B =


b11 b12 . . . b1k
b21 b22 . . . b2k
...

...
. . .

...
bn1 bn2 . . . bnk



AB =


a11 · b11 + . . .+ a1n · bn1 a11 · b12 + . . .+ a1n · bn2 . . . a11 · b1k + . . .+ a1n · bnk
a21 · b11 + . . .+ a2n · bn1 a21 · b12 + . . .+ a2n · bn2 . . . a21 · b1k + . . .+ a2n · bnk

...
...

. . .
...

am1 · b11 + . . .+ amn · bn1 am1 · b12 + . . .+ amn · bn2 . . . am1 · b1k + . . .+ amn · bnk
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How do humans remember this? Here’s what I always tell myself. The top-left index is the
first row by the first column. Moving to the right, the next index is the first row by the
second column. And so on. The leftmost index of the second row is the second row by the
first column. And so on.

Notice the convention is to write matrices using bolded capital letters.

Example:

[
2 4
5 3

] [
3 6
−1 9

]
=

[
2 · 3 + 4 · (−1) 2 · 6 + 4 · 9
5 · 3 + 3 · (−1) 5 · 6 + 3 · 9

]
=

[
2 48
12 57

]

Example:[
1 2 −1
3 1 4

] −2 5
4 −3
2 1

=

[
1 · (−2) + 2 · 4 + (−1) · 2 1 · 5 + 2 · (−3) + (−1) · 1

3 · (−2) + 1 · 4 + 4 · 2 3 · 5 + 1 · (−3) + 4 · 1

]
=

[
4 −2
6 16

]

Example:

[
1 1
2 2

] [
2 3
2 3

]
=

[
1 · 2 + 1 · 2 1 · 3 + 1 · 3
2 · 2 + 2 · 2 2 · 3 + 2 · 3

]

[
1 1
2 2

] [
2 3
2 3

]
=

[
4 6
8 12

]

Example:

[
1 0
0 1

] [
6 5
7 1

]
=

[
1 · 6 + 0 · 7 1 · 5 + 0 · 1
0 · 6 + 1 · 7 0 · 5 + 1 · 1

]

[
1 0
0 1

] [
6 5
7 1

]
=

[
6 5
7 1

]

Notice two things:

1. Matrix multiplication is not necessarily commutative! That is, it is not generally (but
can sometimes be) true that AB 6= BA
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2. In the shapes of the matrices, m × n and n × k, the inside numbers n and n need
to match in order to multiply them, and the result will have the shape of the outside
letters, so m× k.

Noncommutative example: We saw that

[
1 1
2 2

] [
2 3
2 3

]
=

[
4 6
8 12

]

But

[
2 3
2 3

] [
1 1
2 2

]
=

[
2 · 1 + 3 · 2 2 · 1 + 3 · 2
2 · 1 + 3 · 2 2 · 1 + 3 · 2

]

[
2 3
2 3

] [
1 1
2 2

]
=

[
8 8
8 8

]

How do we know if we have two matrices that cannot be multiplied? We will have either too
few or too many numbers in a row, when we go to take the inner product of that row with
the corresponding column of the other matrix.

• (AB)C = A(BC) for matrices A,B,C with Am×n, Bn×k, and Ck×p

• (A+D)G = AG+DG for matrices A,D,G with Am×n, Dm×n, and Gn×k. Ques-
tion: Verify that the shapes work out.

• xAB = (xA)B = A(xB) = ABx for matrices A,B with Am×n, Bn×k, and x ∈ R

Question: Verify all of those properties for the following values

A =

[
1 1
1 1

]
,B =

[
2 0 1
1 0 2

]
,C =

1
2
3

 ,G =

[
1
2

]
,D =

[
1 0
0 1

]
, x = 3

As practice for our new idea of matrix multiplication, let’s go back and reconsider a claim
that we saw before: that for column vectors a and b, a′b is their dot product. Consider
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a =


a1
a2
...
an



b =


b1
b2
...
bn


Then

a′ =
[
a1 a2 . . . an

]
So, by our definition of matrix multiplication,

a′b = a1b1 + a2b2 + . . .+ anbn

Which is just how we defined the dot product. Similarly, you can see that a′a captures
something like the idea of squaring the column vector a – it gives the sum of the square of
each number in a.

The m×m identity matrix is the matrix Im×m such that IA = AI = A ∀Am×m

The identity matrix has the form:

Im×m =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Example: Let A =

[
1 2
3 4

]
. Then

I2×2A =

[
1 0
0 1

] [
1 2
3 4

]
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I2×2A =

[
1 · 1 + 0 · 3 1 · 2 + 0 · 4
0 · 1 + 1 · 3 0 · 2 + 1 · 4

]

I2×2A =

[
1 2
3 4

]

Notice that identity matrices are always square. Question: Why? Answer: Because if you
multiply a nonsquare matrix by a nonsquare matrix you necessarily get a different matrix
because the shape will change.

If an operation of interest is defined on two matrices, we call those matrices conformable.

A matrix A is called idempotent if AA = A.

Example: Let A =

[
4 −1
12 −3

]
. Then

AA =

[
4 −1
12 −3

] [
4 −1
12 −3

]

A2 =

[
4 · 4 + (−1) · 12 4 · (−1) + (−1) · (−3)
12 · 4 + (−3) · 12 12 · (−1) + (−3) · (−3)

]

A2 =

[
4 −1
12 −3

]

A2 = A

The matrix transpose of the matrix A, denoted AT or A′, is an operation that switches
the rows and columns of a matrix A.

Example: A =

[
1 2
3 4

]
=⇒ A′ =

[
1 3
2 4

]
Properties of matrix transposes, with conformable matrices A,B and c ∈ R:

• (A′)′ = A

• (A + B)′ = A′ + B′
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• (AB)′ = B′A′

• (cA)′ = cA′

The rank of a matrix is the number of linearly independent rows or columns (these are the
same).

Example: The following matrix has rank 3:

A =

1 0 0
0 1 0
0 0 1


The following matrix has only rank 2, because its third row is a linear combination of

the first row and the second row:

A =

1 0 0
0 1 0
1 1 0


Practice questions:

1. Is I idempotent? Answer: Sure is.

2. Compute

[
2 1
3 4

] [
1 3
4 2

]
or explain why you cannot

3. Compute

[
2 1 5
3 4 0

]1 3
4 2
2 0

 or explain why you cannot

4. Compute

1 3
4 2
2 0

[2 1 5
3 4 0

]
or explain why you cannot

5. Compute

1 3
4 2
2 0

2 1 5
3 4 0
0 0 1

 or explain why you cannot

6. Compute

[
1 2 3
4 5 6

]′
7. Compute 3

[
5 4
1 2

]
−
[
4 3
4 3

]′
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8. What is the rank of each of the following matrices:[
1 0
0 1

]
Answer: 2[

1 0
1 0

]
Answer: 1[

0 1
0 1

]
Answer: 11 2 3

2 4 6
3 6 8

 Answer: 2

6.4 Matrix inversion

We’ve developed three of the four standard binary arithmetical operators for matrices: we
can add, subtract, and multiplty. So what about division? We won’t develop any general
idea of matrix division, but we will develop the special case of multiplying by a reciprocal:
namely, what do we have to multiply a matrix by to get the matrix equivalent of the number
one? The equivalent of a reciprocal for a matrix A is called its inverse.

It turns out that some of the most important tools in political science – including linear re-
gression – involve taking the inverse of a matrix of data. The inverse of a matrix A, denoted
A−1, is the matrix such that AA−1 = I. In 598 we will talk a lot about how to calculate
matrix inverses.

Example: Consider the matrix A =

[
1 1
1 −1

]
. I claim that the inverse of this matrix is

A−1 =

1
2

1
2

1
2
−1

2

. Let’s verify that assertion:

AA−1 =

1 1

1 −1

1
2

1
2

1
2
−1

2



AA−1 =

 1
2

+ 1
2

1
2
− 1

2

1
2
− 1

2
1
2

+ 1
2



AA−1 =

[
1 0
0 1

]
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Example: Sadly (?), not all matrices have inverses! First, only square matrices can have
inverses. But also not all square matrices have inverses. Consider the matrix

A =

[
0 0
1 5

]

If A has an inverse A−1, then it has to satisfy the definition of an inverse, meaning:

AA−1 = I2×2

Then

[
0 0
1 5

] [
a b
c d

]
=

[
1 0
0 1

]
[

0 0
a+ 5c b+ 5d

]
=

[
1 0
0 1

]

So for any values of a, b, c, d, we will require 0 = 1. Thus there can be no matrix that satisfies
the requirements for A−1 in this example.

The reason that this did not work out is that the top row in A contains only zeroes. But
that is not the only problem that can stop a matrix from having an inverse, it is only one
example of a problem.

So how can we calculate this peculiar beast? And when does it exist? To answer these
questions, we’ll have to first develop a few more ideas.

6.4.1 Determinants and adjoints

The definition for the determinant of a matrix depends on its size (or else requires many
more definitions than we have time to discuss here). In math camp, I just want you to see
the determinant of a 2 by 2 matrix, so that when you see the determinants of larger matrices
in (especially) 598 and 699 you will have some basis for comparison. That definition is as
follows.

The determinant of the real-valued 2× 2 matrix

71



A =

[
a b
c d

]

is denoted detA or |A| or (more fully)

∣∣∣∣a b
c d

∣∣∣∣ and is given by

detA = ad− bc

It turns out that the determinant of a matrix holds the secret to whether or not it is invert-
ible. Let’s practice calculating them so that we’re ready when we see the role they play.

Example: Let

A =

[
5 4
2 3

]

then

∣∣∣∣5 4
2 3

∣∣∣∣ = 5 · 3− 4 · 2

∣∣∣∣5 4
2 3

∣∣∣∣ = 7

Example: Let’s try another

A =

[
1 0
0 1

]

then

∣∣∣∣1 0
0 1

∣∣∣∣ = 1 · 1− 0 · 0

∣∣∣∣1 0
0 1

∣∣∣∣ = 1
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Finally, before we find out how to calculate matrix inverses, we need one more idea: the
matrix adjoint. The adjoint also is defined for a matrix with any number of entries, but we
will stick to thinking about adjoints of 2 by 2 matrices for today.

The adjoint of the real-valued 2× 2 matrix

[
a b
c d

]

is given by

[
d −b
−c a

]

Example: Let

A =

[
5 4
2 3

]

then the adjoint of A, adj A, is given by

adj A =

[
3 −4
−2 5

]

Example: Let

A =

[
1 0
0 1

]

then

adj A =

[
1 0
0 1

]
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6.4.2 Equation for inverting a matrix

At long last, we are ready to see the equation for inverting a square matrix A. Hurray!

A−1 =
1

detA
adj A

This shows the crucial test for whether or not a matrix has an inverse. If its determinant
equals zero, then the equation for its inverse is not defined, because it involves division by
zero. If its determinant is nonzero, then we will always be able to calculate an inverse using
this formula.

Let’s see some examples.

Example: Find the inverse of

A =

[
5 4
2 3

]

We have already shown that

adj A =

[
3 −4
−2 5

]

and

∣∣∣∣5 4
2 3

∣∣∣∣ = 7

So we can find the inverse by using our inverse formula,

A−1 =
1

detA
adj A

A−1 =
1

7
adj

[
3 −4
−2 5

]
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A−1 =

 3
7
−4

7

−2
7

5
7


So, did it work? Let’s check if this was a successful inverse using the definition of a matrix
inverse.

AA−1 =

[
5 4
2 3

] 3
7
−4

7

−2
7

5
7



AA−1 =

5 · 3
7
− 4 · 2

7
5 · −4

7
+ 4 · 5

7

2 · 3
7
− 3 · 2

7
2 · −4

7
+ 3 · 5

7



AA−1 =

15
7
− 8

7
−20

7
+ 20

7

6
7
− 6

7
−8

7
+ 15

7



AA−1 =

7
7

0

0 7
7



AA−1 =

[
1 0
0 1

]

AA−1 = I

Huzzah! Now, we also said one other thing should work. We should also be able to left-
multiply A by A−1, and find that A−1A = I. Question: Verify this on your own.

Note: Notice that, the way we defined everything, whenever A−1 exists, then (A−1)−1 = A.

So in this example the inverse of

 3
7
−4

7

−2
7

5
7

 is

[
5 4
2 3

]
.
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Example: Let’s find the inverse of the following matrix:

A =

[
2 1
1 2

]

Start by finding the determinant:

detA =

∣∣∣∣2 1
1 2

∣∣∣∣
detA = 2 · 2− 1 · 1

detA = 3

Next find the adjoint

adj A =

[
2 −1
−1 2

]

Now we can apply the inverse formula

A−1 =
1

detA
adj A

A−1 =
1

3

[
2 −1
−1 2

]

A−1 =

 2
3
−1

3

−1
3

2
3


Now, if you’re feeling plucky, you can verify that AA−1 = I:
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AA−1 =

[
2 1
1 2

] 2
3
−1

3

−1
3

2
3



AA−1 =

22
3
− 1

3
−21

3
+ 2

3

2
3
− 21

3
−1

3
+ 22

3



AA−1 =

[
1 0
0 1

]

6.4.3 Eigenvalues and eigenvectors

Let A be a square matrix. A number λ is an eigenvalue of the matrix A if the system of
linear equations

AX = λX

has nonzero solutions X, called eigenvectors. Notice that we can rewrite this equation
as follows:

λX −AX = 0

λIX −AX = 0

Right-factoring out the X (when you do this step, make sure you don’t accidentally switch
the order of the matrices — the order in which you multiply matrices matters!)

(λI −A)X = 0

The reason I show this to you now is that this equation has a tight connection to the exis-
tence of a matrix inverse. Specifically, λI −A represents the matrix determinant, and the
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equation above has a nonzero solution for X if any only if the determinant is zero. A matrix
has an inverse if and only if it does not have zero as an eigenvalue.

Example: We will show that λ = −3 is an eigenvalue of the matrix2

A =

 5 8 16
4 1 8
−4 −4 −11


We verify that λ = −3 satisfies the condition (λI −A)X = 0. So,

(
− 3

1 0 0
0 1 0
0 0 1

−
 5 8 16

4 1 8
−4 −4 −11

)x1x2
x3

 =

0
0
0


(−3 0 0

0 −3 0
0 0 −3

−
 5 8 16

4 1 8
−4 −4 −11

)x1x2
x3

 =

0
0
0


−8 −8 −16
−4 −4 −8
4 4 8

x1x2
x3

 =

0
0
0


So this is the specific claim we’re making. It turns out that any X is a solution that satisfies

X = a1

−1
1
0

+ a2

−2
0
1


with a1, a2 ∈ R, a1, a2 6= 0.

6.5 Elementary row operations and matrix factorisations

Now that we have a good understanding of matrices for their own sake, let’s imbue them
with a very common interpretation: thinking about matrices as a container that represents

2This example is taken from Linear algebra with applications (1986) by W. Keith Nicholson.
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a solution to a system of linear equations.

Let’s consider the following system of equations:3

Equation 1: 3x+ 4y + z = 1

Equation 2: 2x+ 3y = 0

Equation 3: 4x+ 3y − z = −2

Let’s solve it in the way we learned in school: using substitution. By Equation 2, we have

3y = −2x

y = −2

3
x

Inserting this into Equation 1,

3x+ 4
(
− 2

3

)
x+ z = 1

3x− 8

3
x+ z = 1

1

3
x+ z = 1

1

3
x = 1− z

x = 3− 3z

3This example is heavily adapted from an example in Linear algebra with applications (1986) by W. Keith
Nicholson.
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Now inserting these into, say, Equation 3:

4x+ 3y − z = −2

4(3− 3z) + 3
(
− 2

3
(3− 3z)

)
− z = −2

12− 12z − 6 + 6z − z = −2

−7z = −8

z =
8

7

So that we have

x = 3− 3
8

7

x =
21

7
− 24

7

x = −3

7

And

y = −2

3

(
− 3

7

)

y =
2

7
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The extreme horror of solving this system by substitution is our main motivation for wanting
to use matrices to solve systems of linear equations. Imagine if we had 55 variables and 100
equations, it could take us all day to solve a big system by substitution. To that end, we
want to develop a way to do this kind of work much faster using matrices. First, let’s write
that system of equations as a matrix, with the coefficients of each variable (in order! ) inside
the bulk of the matrix, and the solution to that system of equations demarcated over on the
right-hand side.

3 4 1 1
2 3 0 0
4 3 −1 −2


What can we do to this matrix without losing the meat of what the equations are saying?
I’m going to make a claim, and then we’re going to see what that claim is true.

The elementary row operations are as follows:

• Switch two rows

• Multiply a row by a nonzero scalar

• Add a multiple of one row to another

Let’s see why the elementary row operations are OK to apply to a system of linear equa-
tions. We said they are tools for simplifying a system of equations without changing the
result. Question: Try to change the result by adding a multiple of one of these equations to
the other, multiplying both sides of one of the equations by a nonzero scalar, or multiplying
both sides of an equation by 0. It should be clear that switching the order of the equations
certainly does not change the answer we will get.

Our first job is to get a 1 in the top-left index. A very natural first step is to subtract row
2 from row 1:

1 1 1 1
2 3 0 0
4 3 −1 −2


Now we can use this newfound 1 to reduce the next two rows to zero, first by subtracting 2
times the first row from the second row:

1 1 1 1
0 1 −2 −2
4 3 −1 −2
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And next by subtracting 4 times row 1 from row 3:

1 1 1 1
0 1 −2 −2
0 −1 −5 −6


Now these other rows can be used to get some zeroes in the digits behind the leading digits.
First let’s subtract row 2 from row 1:

1 0 3 3
0 1 −2 −2
0 −1 −5 −6


Adding row 2 to row 3 will produce a similar effect:

1 0 3 3
0 1 −2 −2
0 0 −7 −8


We want to get this into the simplest form possible, so the next step should be to adjust row
3 so that its only remaining coefficient is 1, by multiplying it by the scalar −1

7
:

1 0 3 3
0 1 −2 −2
0 0 1 8

7


Adding two times row 3 to row 2 produces the following result:

1 0 3 3
0 1 0 2

7

0 0 1 8
7


And finally, subtracting 3 times row 3 to row 1 produces the reduced row echelon form
augmented matrix:

1 0 0 −3
7

0 1 0 2
7

0 0 1 8
7
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If we split this apart into equations again, we get the three equations

x = −3

7

y =
2

7

z =
8

7

So we can see that it matches the direct result we got by substitution. This method will
always work for any system of linear equations that has a solution. The following definition
explains what we want the matrix to look like so that we can read the solution to the system
of linear equations off:

A matrix is in row-echelon form if all of the following are true:

• The leftmost nonzero entry in each row (called the leading entry) is a 1,

• Every leading entry is to the right of the leading entry above it,

• Rows that only contain zeroes are at the bottom of the matrix.

A matrix is in reduced row-echelon form if

• It is in row-echelon form,

• Each leading 1 is the only nonzero entry in its column

Example: Solve the following system of equations by setting up an augmented matrix and
row reducing it:

x1 + 2x2 = 3

x1 + 3x2 = 5
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The augmented matrix is

(
1 2 3
1 3 5

)

First, I want to get rid of that 1 in the bottom left. That looks easy enough to do: just
subtract row 1 from row 2.

(
1 2 3
1 3 5

)

R2−R1→R2

−−−−−−−−→
(

1 2 3
1− 1 3− 2 5− 3

)

R2−R1→R2

−−−−−−−−→
(

1 2 3
0 1 2

)

Next, to simplify the matrix, we want to get rid of that 2 over the 1. To do that, we can
simply take 2 times row 2 away from row 1:

R1−2R2→R1

−−−−−−−−→
(

1 2− 2 · 1 3− 2 · 2
0 1 2

)

(
1 0 −1
0 1 2

)

Now we can read off the answers:

x1 = −1

x2 = 2
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Example: Solve the following system of equations by setting up an augmented matrix and
row reducing it:

2x1 + 3x2 = 5

4x1 − 2x2 = 3

The augmented matrix is

(
2 3 5
4 −2 3

)
R2−2R1→R2

−−−−−−−−→
(

2 3 5
4− 2 · 2 −2− 3 · 2 3− 2 · 5

)
(

2 3 5
0 −8 −7

)

− 1
8
R2→R2

−−−−−−−−→
(

2 3 5
0 1 7

8

)
R1−3R2→R1

−−−−−−−−→
(

2 0 5− 21
8

0 1 7
8

)
(

2 0 19
8

0 1 7
8

)
1
2
R1→R1

−−−−−−−−→
(

1 0 19
16

0 1 7
8

)

So x1 = 19
16

and x2 = 7
8
. You could confirm this by substitution if you were so motivated.

Question: Use elementary row operations to bring the following matrices to reduced row
echelon form, then check your work with Wolfram|Alpha using syntax like the example below.

(
1 2 5
5 3 2

)
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row reduce {{1,2,5},{5,3,2}}

1 0 4 5
9 9 9 1
1 1 1 9


1 2 3 1

4 5 6 2
7 8 7 3


Question: What is wrong with the following system of linear equations?

(
1 2 1
0 0 1

)

Answer: It requires that 0x1 + 0x2 = 1, so 0 = 1. This tells us that this system of linear
equations has no solution.
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7 Logic and common types of proof

7.1 Logic

In the methods sequence, and on occasion in published research, you will encounter notation
from formal logic. It’s good to have seen the basics once:

• “A =⇒ B”, read as “A implies B”, means that B is true whenever A is true. So, “if
A, then B”

• If A =⇒ B and B =⇒ A, then we write A ⇐⇒ B, read as “A if and only if B” and
also written “A iff B”. This means that A and B always have the same truth value: if
A is true then B is true, if A is false then B is false, if B is true then A is true, and if
B is false then A is false. If you haven’t thought about this before, it’s worth setting
aside a moment to think about why “if and only if” is an appropriate phrase for that.

• “Not A” or “the negation of A” is denoted ¬A. Whatever the truth value of A is, ¬A
has the opposite truth value.

• We said that A =⇒ B means that whenever A is true, B will also have to be true.
So what if we observe that B is not true? This is called the contrapositive: if A forces
B to be true, and B is not true, then A cannot be true either.

• “And” is denoted ∧

• “Or” is denoted ∨

• We can also create composite statements, where one proposition affects the relation-
ship between other propositions: A =⇒ (B =⇒ C): the proposition A implies that
the proposition B implies C.

Common terms in proofs and derivations:

• Axiom or assumption: a statement used before or at the start of a proof that is taken
to be true.

• Theorem: a proven proposition, or a statement of interest to be proven.

• Lemma: an intermediate claim, which can be already proven, simply assumed or proven
in the midst of another proof, which acts as a step in the proof of a theorem.
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• Corollary: a claim that follows from another claim, and does not require an independent
proof.

7.2 Three ubiquitous types of proof

• Direct: use deduction to string together series of true statements, starting with the
assumptions and ending with the conclusion.

• Contradiction: start by assuming the statement you’re trying to prove is actually
false, then show that this implies a contradiction.

• Counterexample: suppose we make a general claim about a big family of objects. If
we can find a single object in that family of objects that the statement is not true of,
then the general claim cannot be true.

Let’s talk a bit about how to approach each of these types of demonstration.

7.2.1 How to approach “Show that this is true”

Fairly often in classes, most likely in the stats class POLSCI 599, you will encounter ques-
tions like “show that [some statement] is true” or “show that [some equation] is equal to
[some other equation]”. What do we do when we see these sorts of questions?

I’m going to modify some real examples from past offerings of POLSCI 599, swapping out
exactly what is being established, but keeping the form of the question. We will practice a
technique for tackling these sorts of questions.

Imagine that you were asked “show that 22 = 4”. I recommend the following simple tech-
nique:

Step 1: Ask yourself what the starting point is. Here, we are supposed to start with 22.

Step 2: Ask yourself what the goal is. Here, the goal is to do something to 22 and arrive at
the number 4.

Step 3: Now physically write down the starting point and the goal, demarcated by a line,
as follows:

LHS RHS

22 4

Once you have your starting point written down on the left, you know exactly what you
have to fiddle around with in order to arrive at the desired goal. Here, I want to take 22 and
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rearrange it according to whatever relevant rules I know until I get the number 4.

In this example, my first idea would be to recall the definition of exponentiation in terms of
multiplication. That is, I can rewrite the value on the next line as follows:

LHS RHS

22 4
2 · 2

And now all that remains is to do the multiplication:

LHS RHS

22 4
2 · 2

4

When statement you’re manipulating matches the goal, you’re done.

Let’s try a more realistic example. Say that you have the sets S = {1, 2, 3} and T = {3, 4, 5}
and you are asked the following question: “Show that (S ∪ T ) \ (S ∩ T ) ∪ ∅ = {1, 2, 4, 5}.”
Let’s start by just writing the question out in the format for derivations, with the starting
place on the left-hand side and the goal on the right-hand side:

LHS RHS

(S ∪ T ) \ (S ∩ T ) ∪ ∅ {1, 2, 4, 5}

Now I’m going to substitute in the values as given in the question:

LHS RHS

(S ∪ T ) (S ∩ T ) ∪ ∅ {1, 2, 4, 5}
({1, 2, 3} ∪ {3, 4, 5}) \ ({1, 2, 3} ∩ {3, 4, 5}) ∪ ∅

Now, suppose we’re stuck. What do we do next? There are several symbols that we have
to make sure we understand before we can proceed. In this case, we want to make sure we
remember the meanings of ∪,∩, \, and ∅. Other good things to do in a situation like this
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are to try to rephrase the expression using other (maybe simpler) versions of it that you’ve
seen elsewhere; for example, maybe {1, 2, 3} is a set you have seen an expression for in
some slide somewhere, and it turns out you can do something simplifying to it. In this situ-
ation, all we need to do is make sure we remember our operations and apply them, as follows:

LHS RHS

(S ∪ T ) (S ∩ T ) ∪ ∅ {1, 2, 4, 5}
({1, 2, 3} ∪ {3, 4, 5}) \ ({1, 2, 3} ∩ {3, 4, 5}) ∪ ∅
{1, 2, 3, 4, 5} \ ({1, 2, 3} ∩ {3, 4, 5}) ∪ ∅

{1, 2, 3, 4, 5} \ {3} ∪ ∅
{1, 2, 4, 5} ∪ ∅
{1, 2, 4, 5}

Now that we have the same thing on the left and the right, we have shown the result.

7.2.2 How to approach “Show that this is false”

Often this type of statement will be amenable to a direct approach. But there are two special
tricks that work here which specifically work for showing that a statement is false.

Example of a counterexample: Suppose you encounter the question “prove that not all
natural numbers are odd.” You could proceed as follows. First, notice that the negation
of the sentence is “all natural numbers are odd”. It must be true either that all numbers
are odd, or that not all numbers are odd. So I want to disprove the statement “all natural
numbers are odd”. To disprove this statement it suffices to give a counterexample. If I can
name a natural number that is not odd, then it cannot be true that all natural numbers are
odd. So I will pick the number 4. Since 4 is not odd, it is not true that all natural numbers
are odd, hence we have proven that not all natural numbers are odd.

Notice, however, that examples are different from counterexamples!

Example that doesn’t work: Suppose you encounter the question “prove that all integers
are positive”, and you say “indeed, consider 5. 5 is a positive integer. Therefore all integers
are positive”. This is not just wrong, it is actually not even a response to the question you
were asked. The fact that you can come up with examples of positive integers says nothing
about the truth of statement that all integers are positive! It just means that there’s at least
one integer that’s positive. Indeed, the statement can be disproven with the counterexample
of, say, -2.
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It is extremely common for people to try to prove general statements in the methods se-
quence with answers that start out “Consider the example ...”, and then talk only about one
example for which the statement happens to be true. If you can find an example for which a
general statement is wrong, then that statement must be wrong. But if you find an example
for which a general statement is true, all you know is that the statement is not wrong for
every single possible example; it still could be wrong about arbitrarily many other examples.

Contradiction is arguably easier to wrap your head around. The idea is as follows. Say
that you encounter a question like “Show that [some statement] is false.” The trick in proof
by contradiction is to first assume that the statement is actually true, and then follow a
series of steps each of which is individually true. If eventually you hit a contradiction — a
falsehood — then something in your argument must have been false. Assuming that every
step along the way really was true — that is, that you didn’t make any mistakes — then the
only thing that can be wrong is the assumption that the statement is true, so the statement
must have been false instead!

Here’s a simple example of a proof by contradiction using material that we’re familiar with.
I might ask you the following: Prove that

[
1 1
1 1

]

is not the inverse of

[
1 0
0 1

]

You could proceed as follows. I know that either a given matrix is the inverse of a certain
matrix, or it is not. There’s no other possibility: it is or it isn’t. So what happens if we
suppose that the statement is true? Let’s suppose that

[
1 1
1 1

]

is indeed the inverse of

[
1 0
0 1

]

91



Then, according to our definition of a matrix inverse, it must be true that

[
1 1
1 1

] [
1 0
0 1

]
=

[
1 0
0 1

]

but if you conduct the matrix multiplication, you will see that the left-hand side is not equal
to the right-hand side:

[
1 1
1 1

]
6=
[
1 0
0 1

]

We arrived at an abject falsehood, so something that we did along the way must have been
incorrect, otherwise how could we have arrived at a falsehood? To understand where we
went wrong, let’s think through everything we did and see what happened. We are confident
that we did our matrix multiplication right in the last step. We also know for sure that we
got the definition of a matrix inverse right, so we set up the equation correctly and then we
reduced it correctly until it was obviously wrong. The only possible falsehood was the first
step: we must have been wrong in assuming that the given matrices were inverses of each
other, because they didn’t satisfy the one requirement of an inverse!

This was a proof by contradiction: we assumed the negation of the proposition, reasoned
through it until we hit something that was obviously wrong (the eponymous “contradiction”),
and realised that the negation of the proposition must be false, so the only possible conclusion
is that the original proposition is true.
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